Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1267590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027153

RESUMO

Xiphophorus fish exhibit a clear phenotypic polymorphism in puberty onset and reproductive strategies of males. In X. nigrensis and X. multilineatus, puberty onset is genetically determined and linked to a melanocortin 4 receptor (Mc4r) polymorphism of wild-type and mutant alleles on the sex chromosomes. We hypothesized that Mc4r mutant alleles act on wild-type alleles by a dominant negative effect through receptor dimerization, leading to differential intracellular signaling and effector gene activation. Depending on signaling strength, the onset of puberty either occurs early or is delayed. Here, we show by Förster Resonance Energy Transfer (FRET) that wild-type Xiphophorus Mc4r monomers can form homodimers, but also heterodimers with mutant receptors resulting in compromised signaling which explains the reduced Mc4r signaling in large males. Thus, hetero- vs. homo- dimerization seems to be the key molecular mechanism for the polymorphism in puberty onset and body size in male fish.


Assuntos
Receptor Tipo 4 de Melanocortina , Maturidade Sexual , Animais , Masculino , Dimerização , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Polimorfismo Genético , Tamanho Corporal
2.
Fish Physiol Biochem ; 49(3): 543-556, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37140738

RESUMO

Astyanax lacustris, locally known as lambari-do-rabo-amarelo, is a study model for Neotropical fish. Testis of A. lacustris shows deep morphophysiological changes throughout the annual reproductive cycle. This work analyzed the distribution of claudin-1, actin, and cytokeratin as elements of the cytoskeleton in germinal epithelium and interstitium; the distribution of type I collagen, fibronectin, and laminin as extracellular matrix compounds; and the localization of androgen receptor in the testis of this species. Claudin-1, cytokeratin, and actin were present in the Sertoli cells and modified Sertoli cells, and actin was also detected in peritubular myoid cells. Type I collagen were in the interstitial tissue, laminin in the basement membrane of germinal epithelium and endothelium, but fibronectin was additionally detected in the germinal epithelium compartment. The labeling of androgen receptor was higher in peritubular myoid cells and undifferentiated spermatogonia, and weaker labeling was detected in type B spermatogonia. Therefore, the present work highlights new aspects of the biology of the testis of A. lacustris, and contribute to amplify the understanding of this organ.


Assuntos
Characidae , Testículo , Masculino , Animais , Fibronectinas/análise , Receptores Androgênicos/análise , Laminina/análise , Actinas , Colágeno Tipo I , Claudina-1/análise , Queratinas/análise
3.
Sex Dev ; 17(2-3): 84-98, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36878204

RESUMO

BACKGROUND: Encompassing about half of the 60,000 species of vertebrates, fish display the greatest diversity of sex determination mechanisms among metazoans. As such that phylum offers a unique playground to study the impressive variety of gonadal morphogenetic strategies, ranging from gonochorism, with either genetic or environmental sex determination, to unisexuality, with either simultaneous or consecutive hermaphroditism. SUMMARY: From the two main types of gonads, the ovaries embrace the important role to produce the larger and non-motile gametes, which is the basis for the development of a future organism. The production of the egg cells is complex and involves the formation of follicular cells, which are necessary for the maturation of the oocytes and the production of feminine hormones. In this vein, our review focuses on the development of ovaries in fish with special emphasis on the germ cells, including those that transition from one sex to the other as part of their life cycle and those that are capable of transitioning to the opposite sex depending on environmental cues. KEY MESSAGES: Clearly, establishing an individual as either a female or a male is not accomplished by the sole development of two types of gonads. In most cases, that dichotomy, be it final or transient, is accompanied by coordinated transformations across the entire organism, leading to changes in the physiological sex as a whole. These coordinated transformations require both molecular and neuroendocrine networks, but also anatomical and behavioural adjustments. Remarkably, fish managed to tame the ins and outs of sex reversal mechanisms to take the most advantages of changing sex as adaptive strategies in some situations.


Assuntos
Gônadas , Ovário , Feminino , Masculino , Animais , Peixes , Oócitos , Células Germinativas
4.
Cells ; 11(7)2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406682

RESUMO

The conspicuous colour sexual dimorphism of guppies has made them paradigmatic study objects for sex-linked traits and sex chromosome evolution. Both the X- and Y-chromosomes of the common guppy (Poecilia reticulata) are genetically active and homomorphic, with a large homologous part and a small sex specific region. This feature is considered to emulate the initial stage of sex chromosome evolution. A similar situation has been documented in the related Endler's and Oropuche guppies (P. wingei, P. obscura) indicating a common origin of the Y in this group. A recent molecular study in the swamp guppy (Micropoecilia. picta) reported a low SNP density on the Y, indicating Y-chromosome deterioration. We performed a series of cytological studies on M. picta to show that the Y-chromosome is quite small compared to the X and has accumulated a high content of heterochromatin. Furthermore, the Y-chromosome stands out in displaying CpG clusters around the centromeric region. These cytological findings evidently illustrate that the Y-chromosome in M. picta is indeed highly degenerated. Immunostaining for SYCP3 and MLH1 in pachytene meiocytes revealed that a substantial part of the Y remains associated with the X. A specific MLH1 hotspot site was persistently marked at the distal end of the associated XY structure. These results unveil a landmark of a recombining pseudoautosomal region on the otherwise strongly degenerated Y chromosome of M. picta. Hormone treatments of females revealed that, unexpectedly, no sexually antagonistic color gene is Y-linked in M. picta. All these differences to the Poecilia group of guppies indicate that the trajectories associated with the evolution of sex chromosomes are not in parallel.


Assuntos
Ciprinodontiformes , Poecilia , Animais , Ciprinodontiformes/genética , Feminino , Masculino , Poecilia/genética , Cromossomos Sexuais/genética , Áreas Alagadas , Cromossomo Y/genética
5.
Sci Rep ; 11(1): 21544, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732792

RESUMO

Arapaima gigas is one of the largest freshwater fish species of high ecological and economic importance. Overfishing and habitat destruction are severe threats to the remaining wild populations. By incorporating a chromosomal Hi-C contact map, we improved the arapaima genome assembly to chromosome-level, revealing an unexpected high degree of chromosome rearrangements during evolution of the bonytongues (Osteoglossiformes). Combining this new assembly with pool-sequencing of male and female genomes, we identified id2bbY, a duplicated copy of the inhibitor of DNA binding 2b (id2b) gene on the Y chromosome as candidate male sex-determining gene. A PCR-test for id2bbY was developed, demonstrating that this gene is a reliable male-specific marker for genotyping. Expression analyses showed that this gene is expressed in juvenile male gonads. Its paralog, id2ba, exhibits a male-biased expression in immature gonads. Transcriptome analyses and protein structure predictions confirm id2bbY as a prime candidate for the master sex-determiner. Acting through the TGFß signaling pathway, id2bbY from arapaima would provide the first evidence for a link of this family of transcriptional regulators to sex determination. Our study broadens our current understanding about the evolution of sex determination genetic networks and provide a tool for improving arapaima aquaculture for commercial and conservation purposes.


Assuntos
Peixes/genética , Peixes/fisiologia , Duplicação Gênica , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/fisiologia , Cromossomos Sexuais , Animais , Mapeamento Cromossômico , Conservação dos Recursos Naturais , DNA/metabolismo , Evolução Molecular , Feminino , Pesqueiros , Marcadores Genéticos/genética , Genótipo , Masculino , Fenótipo , Filogenia , Reação em Cadeia da Polimerase , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Cromossomo Y
6.
Philos Trans R Soc Lond B Biol Sci ; 376(1832): 20200090, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34247496

RESUMO

Different group of vertebrates and invertebrates demonstrate an amazing diversity of gene regulations not only at the top but also at the bottom of the sex determination genetic network. As early as 1995, based on emerging findings in Drosophila melanogaster and Caenorhabditis elegans, Wilkins suggested that the evolution of the sex determination pathway evolved from the bottom to the top of the hierarchy. Based on our current knowledge, this review revisits the 'bottom-up' hypothesis and applies its logic to vertebrates. The basic operation of the determination network is through the dynamics of the opposing male and female pathways together with a persistent need to maintain the sexual identity of the cells of the gonad up to the reproductive stage in adults. The sex-determining trigger circumstantially acts from outside the genetic network, but the regulatory network is not built around it as a main node, thus maintaining the genetic structure of the network. New sex-promoting genes arise either through allelic diversification or gene duplication and act specially at the sex-determination period, without integration into the complete network. Due to this peripheral position the new regulator is not an indispensable component of the sex-determining network and can be easily replaced. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.


Assuntos
Redes Reguladoras de Genes , Ovário/crescimento & desenvolvimento , Processos de Determinação Sexual/genética , Testículo/crescimento & desenvolvimento , Vertebrados/crescimento & desenvolvimento , Animais , Feminino , Masculino , Vertebrados/genética
7.
Philos Trans R Soc Lond B Biol Sci ; 376(1832): 20200091, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34247498

RESUMO

To date, more than 20 different vertebrate master sex-determining genes have been identified on different sex chromosomes of mammals, birds, frogs and fish. Interestingly, six of these genes are transcription factors (Dmrt1- or Sox3- related) and 13 others belong to the TGF-ß signalling pathway (Amh, Amhr2, Bmpr1b, Gsdf and Gdf6). This pattern suggests that only a limited group of factors/signalling pathways are prone to become top regulators again and again. Although being clearly a subordinate member of the sex-regulatory network in mammals, the TGF-ß signalling pathway made it to the top recurrently and independently. Facing this rolling wave of TGF-ß signalling pathways, this review will decipher how the TGF-ß signalling pathways cope with the canonical sex gene regulatory network and challenge the current evolutionary concepts accounting for the diversity of sex-determining mechanisms. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.


Assuntos
Evolução Molecular , Cromossomos Sexuais/genética , Processos de Determinação Sexual , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Vertebrados/genética , Animais , Redes Reguladoras de Genes , Filogenia , Fator de Crescimento Transformador beta/metabolismo
8.
Mol Ecol Resour ; 21(5): 1715-1731, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33590960

RESUMO

The study of sex determination and sex chromosome organization in nonmodel species has long been technically challenging, but new sequencing methodologies now enable precise and high-throughput identification of sex-specific genomic sequences. In particular, restriction site-associated DNA sequencing (RAD-Seq) is being extensively applied to explore sex determination systems in many plant and animal species. However, software specifically designed to search for and visualize sex-biased markers using RAD-Seq data is lacking. Here, we present RADSex, a computational analysis workflow designed to study the genetic basis of sex determination using RAD-Seq data. RADSex is simple to use, requires few computational resources, makes no prior assumptions about the type of sex-determination system or structure of the sex locus, and offers convenient visualization through a dedicated R package. To demonstrate the functionality of RADSex, we re-analysed a published data set of Japanese medaka, Oryzias latipes, where we uncovered a previously unknown Y chromosome polymorphism. We then used RADSex to analyse new RAD-Seq data sets from 15 fish species spanning multiple taxonomic orders. We identified the sex determination system and sex-specific markers in six of these species, five of which had no known sex-markers prior to this study. We show that RADSex greatly facilitates the study of sex determination systems in nonmodel species thanks to its speed of analyses, low resource usage, ease of application and visualization options. Furthermore, our analysis of new data sets from 15 species provides new insights on sex determination in fish.


Assuntos
Biologia Computacional , Peixes/genética , Cromossomos Sexuais , Análise para Determinação do Sexo , Animais , DNA , Feminino , Masculino , Análise de Sequência de DNA , Software , Fluxo de Trabalho
9.
Gen Comp Endocrinol ; 295: 113521, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470471

RESUMO

Fish of the genus Xiphophorus provide a prominent example of genetic control of male body size and reproductive tactics. In X.nigrensis and X.multilineatus, puberty onset and body length are determined by melanocortin 4 receptor (Mc4r) allelic and copy number variations which were proposed to fine-tune the signaling output of the system. Accessory protein Mrap2 is required for growth across species by affecting Mc4r signaling. The molecular mechanism how Mc4r signaling controls puberty regulation in Xiphophorus and whether the interaction with Mrap2 is also involved was so far unclear. Hence, we examined Mc4r and Mrap2 in X.nigrensis and X.multilineatus, in comparison to a more distantly related species, X.hellerii. mc4r and mrap2 transcripts co-localized in the hypothalamus and preoptic regions in large males, small males and females of X.nigrensis, with similar signal strength for mrap2 but higher expression of mc4r in large males. This overexpression is constituted by wild-type and one subtype of mutant alleles. In vitro studies revealed that Mrap2 co-expressed with Mc4r increased cAMP production but did not change EC50. Cells co-expressing the wild-type and one mutant allele showed lower cAMP signaling than Mc4r wild-type cells. This indicates a role of Mc4r alleles, but not Mrap2, in puberty signaling. Different from X.nigrensis and X.multilineatus, X.hellerii has only wild-type alleles, but also shows a puberty onset and body length polymorphism, despite the absence of mutant alleles. Like in the two other species, mc4r and mrap2 transcripts colocalized and mc4r is expressed at substantially higher levels in large males. This demonstrates that puberty and growth regulation mechanism may not be identical even within same genus.


Assuntos
Ciprinodontiformes/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Maturidade Sexual/fisiologia , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Ciprinodontiformes/genética , Variações do Número de Cópias de DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/genética
10.
Nat Ecol Evol ; 4(6): 841-852, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32231327

RESUMO

Sturgeons seem to be frozen in time. The archaic characteristics of this ancient fish lineage place it in a key phylogenetic position at the base of the ~30,000 modern teleost fish species. Moreover, sturgeons are notoriously polyploid, providing unique opportunities to investigate the evolution of polyploid genomes. We assembled a high-quality chromosome-level reference genome for the sterlet, Acipenser ruthenus. Our analysis revealed a very low protein evolution rate that is at least as slow as in other deep branches of the vertebrate tree, such as that of the coelacanth. We uncovered a whole-genome duplication that occurred in the Jurassic, early in the evolution of the entire sturgeon lineage. Following this polyploidization, the rediploidization of the genome included the loss of whole chromosomes in a segmental deduplication process. While known adaptive processes helped conserve a high degree of structural and functional tetraploidy over more than 180 million years, the reduction of redundancy of the polyploid genome seems to have been remarkably random.


Assuntos
Peixes/genética , Genoma , Animais , Cromossomos , Filogenia , Poliploidia
11.
Sci Rep ; 10(1): 5445, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214214

RESUMO

Amphibians evolved in the Devonian period about 400 Mya and represent a transition step in tetrapod evolution. Among amphibians, high-throughput sequencing data are very limited for Caudata, due to their largest genome sizes among terrestrial vertebrates. In this paper we present the transcriptome from the fire bellied newt Cynops orientalis. Data here presented display a high level of completeness, comparable to the fully sequenced genomes available from other amphibians. Moreover, this work focused on genes involved in gametogenesis and sexual development. Surprisingly, the gsdf gene was identified for the first time in a tetrapod species, so far known only from bony fish and basal sarcopterygians. Our analysis failed to isolate fgf24 and foxl3, supporting the possible loss of both genes in the common ancestor of Rhipidistians. In Cynops, the expression analysis of genes described to be sex-related in vertebrates singled out an expected functional role for some genes, while others displayed an unforeseen behavior, confirming the high variability of the sex-related pathway in vertebrates.


Assuntos
Gametogênese/genética , Redes Reguladoras de Genes/genética , Genoma/genética , Salamandridae/genética , Diferenciação Sexual/genética , Transcriptoma/genética , Anfíbios/genética , Animais , Fatores de Crescimento de Fibroblastos , Peixes/genética , Expressão Gênica , Fator de Crescimento Transformador beta , Vertebrados/genética , Sequenciamento Completo do Genoma , Proteínas de Peixe-Zebra
12.
Gene ; 742: 144581, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32173540

RESUMO

In vertebrates, sex determination and differentiation comprehend a fine balance between female and male factors, leading the bipotential anlage to develop towards ovary or testis, respectively. Nevertheless, the mangrove killifish, (Kryptolebias marmoratus) a simultaneous hermaphroditic species, could overcome those antagonistic pathways and evolved to develop and maintain reproductively active ovarian and testicular tissues in the same organ. Morphological and mRNA localization analyzes of developing and adult gonads demonstrate that genes related to testis (dmrt1 and amh) and ovary differentiation (foxl2 and sox9a) follow the same expression pattern observed in gonochoristic species, thus functioning as two independent organs. In addition, Amh expression patterns make it a strong candidate for initiation of the formation and maintenance of the testicular tissue in the hermaphroditic gonad. Differently from described so far, foxl3 seems to have an important role in oogenesis as well as spermatogenesis and gonadal structure.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Peixes Listrados/fisiologia , Ovário/crescimento & desenvolvimento , Autofertilização/genética , Testículo/crescimento & desenvolvimento , Animais , Feminino , Proteínas de Peixes/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Microscopia Eletrônica de Transmissão , Oogênese/genética , Ovário/metabolismo , Ovário/ultraestrutura , Análise Espaço-Temporal , Espermatogênese/genética , Testículo/metabolismo , Testículo/ultraestrutura
13.
Front Cell Dev Biol ; 8: 613497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537305

RESUMO

Sex determination (SD) is a highly diverse and complex mechanism. In vertebrates, one of the first morphological differences between the sexes is the timing of initiation of the first meiosis, where its initiation occurs first in female and later in male. Thus, SD is intimately related to the responsiveness of the germ cells to undergo meiosis in a sex-specific manner. In some vertebrates, it has been reported that the timing for meiosis entry would be under control of retinoic acid (RA), through activation of Stra8. In this study, we used a fish model species for sex determination and lacking the stra8 gene, the Japanese medaka (Oryzias latipes), to investigate the connection between RA and the sex determination pathway. Exogenous RA treatments act as a stress factor inhibiting germ cell differentiation probably by activation of dmrt1a and amh. Disruption of the RA degrading enzyme gene cyp26a1 induced precocious meiosis and oogenesis in embryos/hatchlings of female and even some males. Transcriptome analyzes of cyp26a1-/-adult gonads revealed upregulation of genes related to germ cell differentiation and meiosis, in both ovaries and testes. Our findings show that germ cells respond to RA in a stra8 independent model species. The responsiveness to RA is conferred by sex-related genes, restricting its action to the sex differentiation period in both sexes.

14.
Genome Biol Evol ; 11(8): 2099-2106, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31282935

RESUMO

The piranha enjoys notoriety due to its infamous predatory behavior but much is still not understood about its evolutionary origins and the underlying molecular mechanisms for its unusual feeding biology. We sequenced and assembled the red-bellied piranha (Pygocentrus nattereri) genome to aid future phenotypic and genetic investigations. The assembled draft genome is similar to other related fishes in repeat composition and gene count. Our evaluation of genes under positive selection suggests candidates for adaptations of piranhas' feeding behavior in neural functions, behavior, and regulation of energy metabolism. In the fasted brain, we find genes differentially expressed that are involved in lipid metabolism and appetite regulation as well as genes that may control the aggression/boldness behavior of hungry piranhas. Our first analysis of the piranha genome offers new insight and resources for the study of piranha biology and for feeding motivation and starvation in other organisms.


Assuntos
Caraciformes/genética , Comportamento Alimentar/fisiologia , Proteínas de Peixes/genética , Genoma , Adaptação Fisiológica , Animais , Caraciformes/fisiologia , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Filogenia , Seleção Genética , Transcriptoma
15.
Mol Reprod Dev ; 86(10): 1405-1417, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31140678

RESUMO

In vertebrates, there is accumulating evidence that environmental factors as triggers for sex determination and genetic sex determination are not two opposing alternatives but that a continuum of mechanisms bridge those extremes. One prominent example is the model fish species Oryzias latipes which has a stable XX/XY genetic sex determination system, but still responds to environmental cues, where high temperatures lead to female-to-male sex reversal. However, the mechanisms behind are still unknown. We show that high temperatures increase primordial germ cells (PGC) numbers before they reach the genital ridge, which, in turn, regulates the germ cell proliferation. Complete ablation of PGCs led to XX males with germ cell less testis, whereas experimentally increased PGC numbers did not reverse XY genotypes to female. For the underlying molecular mechanism, we provide support for the explanation that activation of the dmrt1a gene by cortisol during early development of XX embryos enables this autosomal gene to take over the role of the male determining Y-chromosomal dmrt1bY.


Assuntos
Temperatura Alta , Hidrocortisona , Oryzias/fisiologia , Processos de Determinação Sexual/fisiologia , Fatores de Transcrição/metabolismo , Animais , Feminino , Hidrocortisona/análise , Hidrocortisona/metabolismo , Masculino
16.
PLoS Biol ; 17(4): e3000185, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30947255

RESUMO

Dmrt1 is a highly conserved transcription factor, which is critically involved in regulation of gonad development of vertebrates. In medaka, a duplicate of dmrt1-acting as master sex-determining gene-has a tightly timely and spatially controlled gonadal expression pattern. In addition to transcriptional regulation, a sequence motif in the 3' UTR (D3U-box) mediates transcript stability of dmrt1 mRNAs from medaka and other vertebrates. We show here that in medaka, two RNA-binding proteins with antagonizing properties target this D3U-box, promoting either RNA stabilization in germ cells or degradation in the soma. The D3U-box is also conserved in other germ-cell transcripts, making them responsive to the same RNA binding proteins. The evolutionary conservation of the D3U-box motif within dmrt1 genes of metazoans-together with preserved expression patterns of the targeting RNA binding proteins in subsets of germ cells-suggest that this new mechanism for controlling RNA stability is not restricted to fishes but might also apply to other vertebrates.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Oryzias/genética , Processos de Determinação Sexual/genética , Regiões 3' não Traduzidas/genética , Animais , Evolução Biológica , Feminino , Proteínas de Peixes/genética , Células Germinativas/metabolismo , Masculino , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vertebrados/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-31024451

RESUMO

In mammals the melanocortin 4 receptor (Mc4r) signaling system has been mainly associated with the regulation of appetite and energy homeostasis. In fish of the genus Xiphophorus (platyfish and swordtails) puberty onset is genetically determined by a single locus, which encodes the mc4r. Wild populations of Xiphophorus are polymorphic for early and late-maturing individuals. Copy number variation of different mc4r alleles is responsible for the difference in puberty onset. To answer whether this is a special adaptation of the Mc4r signaling system in the lineage of Xiphophorus or a more widely conserved mechanism in teleosts, we studied the role of Mc4r in reproductive biology of medaka (Oryzias latipes), a close relative to Xiphophorus and a well-established model to study gonadal development. To understand the potential role of Mc4r in medaka, we characterized the major features of the Mc4r signaling system (mc4r, mrap2, pomc, agrp1). In medaka, all these genes are expressed before hatching. In adults, they are mainly expressed in the brain. The transcript of the receptor accessory protein mrap2 co-localizes with mc4r in the hypothalamus in adult brains indicating a conserved function of modulating Mc4r signaling. Comparing growth and puberty between wild-type and mc4r knockout medaka revealed that absence of Mc4r does not change puberty timing but significantly delays hatching. Embryonic development of knockout animals is retarded compared to wild-types. In conclusion, the Mc4r system in medaka is involved in regulation of growth rather than puberty.

18.
Sci Rep ; 9(1): 5293, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30923320

RESUMO

We have sequenced the genome of the largest freshwater fish species of the world, the arapaima. Analysis of gene family dynamics and signatures of positive selection identified genes involved in the specific adaptations and unique features of this iconic species, in particular it's large size and fast growth. Genome sequences from both sexes combined with RAD-tag analyses from other males and females led to the isolation of male-specific scaffolds and supports an XY sex determination system in arapaima. Whole transcriptome sequencing showed that the product of the gland-like secretory organ on the head surface of males and females may not only provide nutritional fluid for sex-unbiased parental care, but that the organ itself has a more specific function in males, which engage more in parental care.


Assuntos
Peixes/genética , Genoma , Gigantismo/genética , Processos de Determinação Sexual/genética , Transcriptoma/genética , Animais , Comportamento Animal , Feminino , Peixes/crescimento & desenvolvimento , Água Doce , Masculino , Anotação de Sequência Molecular , Sequenciamento Completo do Genoma
19.
Annu Rev Anim Biosci ; 7: 149-172, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30303691

RESUMO

In vertebrates, sex organs are generally specialized to perform a male or female reproductive role. Acquisition of the Müllerian duct, which gives rise to the oviduct, together with emergence of the Amh/Amhr2 system favored evolution of viviparity in jawed vertebrates. Species with high sex-specific reproductive adaptations have less potential to sex reverse, making intersex a nonfunctional condition. Teleosts, the only vertebrate group in which hermaphroditism evolved as a natural reproductive strategy, lost the Müllerian duct during evolution. They developed for gamete release complete independence from the urinary system, creating optimal anatomic and developmental preconditions for physiological sex change. The common and probably ancestral role of Amh is related to survival and proliferation of germ cells in early and adult gonads of both sexes rather than induction of Müllerian duct regression. The relationship between germ cell maintenance and sex differentiation is most evident in species in which Amh became the master male sex-determining gene.


Assuntos
Transtornos do Desenvolvimento Sexual/genética , Genoma/genética , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Diferenciação Sexual/genética , Transdução de Sinais/genética , Vertebrados/genética , Animais , Evolução Biológica , Feminino , Gônadas/fisiologia , Masculino , Ductos Paramesonéfricos/fisiologia , Filogenia , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Vertebrados/fisiologia
20.
Genome Biol Evol ; 10(6): 1430-1444, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850809

RESUMO

Gonadal sex differentiation and reproduction are the keys to the perpetuation of favorable gene combinations and positively selected traits. In vertebrates, several gonad development features that differentiate tetrapods and fishes are likely to be, at least in part, related to the water-to-land transition. The collection of information from basal sarcopterygians, coelacanths, and lungfishes, is crucial to improve our understanding of the molecular evolution of pathways involved in reproductive functions, since these organisms are generally regarded as "living fossils" and as the direct ancestors of tetrapods. Here, we report for the first time the characterization of >50 genes related to sex differentiation and gametogenesis in Latimeria menadoensis and Protopterus annectens. Although the expression profiles of most genes is consistent with the intermediate position of basal sarcopterygians between actinopterygian fish and tetrapods, their phylogenetic placement and presence/absence patterns often reveal a closer affinity to the tetrapod orthologs. On the other hand, particular genes, for example, the male gonad factor gsdf (Gonadal Soma-Derived Factor), provide examples of ancestral traits shared with actinopterygians, which disappeared in the tetrapod lineage.


Assuntos
Cordados/genética , Peixes/genética , Gametogênese/genética , Diferenciação Sexual/genética , Animais , Evolução Molecular , Masculino , Filogenia , Reprodução/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...